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Review
Tissue homeostasis and regeneration are fueled by resi-
dent stem cells that have the capacity to self-renew, and
to generate all the differentiated cell types that character-
ize a particular tissue. Classical models of such cellular
hierarchies propose that commitment and differentiation
occur unidirectionally, with the arrows ‘pointing away’
from the stem cell. Recent studies, all based on genetic
lineage tracing, describe various strategies employed by
epithelial stem cell hierarchies to replace damaged or lost
cells. While transdifferentiation from one tissue type into
another (‘metaplasia’) appears to be generally forbidden
in nonpathological contexts, plasticity within an individ-
ual tissue stem cell hierarchy may be much more common
than previously appreciated. In this review, we discuss
recent examples of such plasticity in selected mammalian
epithelia, highlighting the different modes of regenera-
tion and their implications for our understanding of cellu-
lar hierarchy and tissue self-renewal.

Epithelial tissue homeostasis and regeneration
Cells lost through physiological ageing or as a result of
environmental insults must be continuously replaced to
preserve the ‘cellular status quo’ of an organism. This
homeostasis is achieved by undifferentiated, self-renewing
stem cells that can generate all cell types of the tissue
(Figure 1). Some adult tissues, such as the epithelia of
intestine, stomach, and skin, are exposed to mechanical
wear-and-tear and are continuously self-renewing. Epithe-
lia of other internal organs, such as liver, pancreas, or
kidneys, are typically self-renewing at a low rate. Although
some general rules may apply across these tissues, each
appears to employ uniquely designed stem cell hierarchies
and, correspondingly, unique tissue architectures to fulfill
specific physiologic demands.

Plasticity refers to the ability of cells to adopt an alter-
nate cellular fate in response to extrinsic or intrinsic
factors. When this plasticity involves a differentiated cell
changing into another differentiated cell of another lineage
within a given tissue, we term this transdifferentiation.
Dedifferentiation is a form of plasticity in which a differ-
entiated cell reverts to a less differentiated cell within the
same tissue lineage. Of note, this ‘working definition’ of
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plasticity excludes epithelial–mesenchymal transitions ob-
served during embryogenesis and tumorigenesis.

Although tissue stem cells are generally viewed as the
major drivers of tissue regeneration after damage, endog-
enous dedifferentiation and transdifferentiation of non-
stem cell populations has been observed to play a key role
in tissue replacement in planarians, amphibians, fishes,
and even some nonepithelial tissues in mammals,
(reviewed elsewhere [1–3]). Emerging evidence from mam-
malian systems implies that differentiated epithelial cells
can function as reserve stem cells upon tissue damage,
implying that this might be a universal phenomenon
adopted by multicellular organisms to replenish lost cells.
This has important implications for the definition of what
constitutes a stem cell and for our views on cellular hier-
archies in homeostasis, regeneration, and in pathologies
such as cancer. In this review, we discuss recent examples
of endogenous plasticity (without genetic/epigenetic ma-
nipulation) in the epithelia of organs of the gastrointestinal
tract, lung, kidney, and adrenal cortex, and highlight
different regenerative strategies. Notably, we focus on
the intestinal epithelium as an excellent genetic model
of plasticity due to the extensive characterization of stem
and differentiated cell populations, which enable bona fide
cell fate conversions to be established.

The intestine as a model of plasticity
Although the liver and pancreas are much more renowned
for regeneration, their suitability as model systems to
study epithelial plasticity is laden with controversies sur-
rounding the existence of stem/progenitor cells during
homeostasis and regeneration [4–7]. In the single-layered
intestine epithelium, however, the localization of all stem
cell populations and differentiated cells is known, all cell
lineages have been extensively characterized, and multiple
mouse models based on stem cell marker genes exist, as
well as well-defined injury models that allow the elimina-
tion of specific cell types.

Stem cell populations in intestinal homeostasis

The intestinal epithelium is the fastest self-renewing
tissue in mammals. The rapid cellular turnover of the
intestinal epithelium is propelled by daily proliferation
of stem cells located at crypt bottoms to generate rapidly
dividing daughter cells (Figure 2A). These in turn differ-
entiate into secretory cells (Paneth cells, goblet cells, and
enteroendocrine cells) or absorptive enterocytes, which
make up the bulk of the villus epithelium (Figure 2B).
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Figure 1. Stem cell hierarchy in homeostasis and regeneration. Niche signals drive stem cell self-renewal and differentiation to generate the specialized lineage populations

that maintain the tissue during homeostasis. Cellular dynamics during homeostasis is indicated by black arrows. During damage and regeneration (blue arrows), cells can

be replenished by mobilization of quiescent stem cells and increased proliferation of surviving stem cells. Alternatively committed cells can dedifferentiate and re-enter the

cell cycle. Lost cells can also be replenished via transdifferentiation into another differentiated cell lineage. Proliferating cells are indicated with a blue nucleus,

differentiated cells are represented with a red nucleus.
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Cheng and Leblond proposed crypt base columnar (CBC)
cells interposed between Paneth cells as the stem cells
driving crypt homeostasis [8–10], which was later incorpo-
rated in the stem cell zone model of Bjerknes and Cheng
Villus

Crypt

TA
zone

+5 Differen�a
zone+4

+3

+2
1

(A)

Figure 2. Current model of the stem cell hierarchies in the intestinal epithelium during
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[11,12]. The leucine-rich repeat containing G-protein cou-
pled receptor 5 gene (Lgr5) has been identified as a specific
marker of CBCs. Genetic lineage tracing (Box 1) in mice
harboring a targeted insertion of an expression cassette of
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Box 1. Genetic lineage tracing and lineage ablation test to

stem cell identity and function

Lineage tracing is a technique used to identify stem cells based on

their capacity of multipotency and self-renewal. In mice, genetic

lineage tracing is performed using the Cre-loxP technique. Here, Cre

recombinase is expressed under the control of a cell-type specific

promoter. In combination with a second transgene, such as a

fluorescent or enzymatic reporter that is inactivated by a loxP-

flanked STOP cassette, Cre activity causes recombination between

loxP sites, excision of the STOP cassette, and reporter expression,

which is also inherited by all of the progeny. Fusion of the Cre

enzyme to the tamoxifen-binding domain of the estrogen receptor

(ERT) further allows temporal control of recombination activity upon

tamoxifen injection.

To test the requirement of a particular cell population, a knockin

genetic approach of the human DTR has been developed [26]. Mice

do not endogenously express DTR, but transgenic expression from

a cell-type specific promoter allows selective cell ablation in vivo

upon DT administration. DTR lineage ablation after Cre labeling of

non-stem cell populations can serve as a powerful assay to reveal

the potential of ‘reserve’ stem cell populations.
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green fluorescent protein–internal ribosome entry site–Cre
recombinase fused to a mutant human estrogen receptor
ligand-binding domain (ERT2) (GFP–IRES–CreERT2)
into the Lgr5 locus has revealed that CBCs are bona fide
actively cycling, long-lived crypt stem cells that self-re-
new and generate progeny comprising all the differenti-
ated cell lineages of the intestinal epithelium [13]. With
time, crypts become clonal, as indicated by the pattern of
how spontaneous somatic mutations are propagated
[14,15]. Multi-color lineage tracing experiments have
allowed the fate of many Lgr5+ stem cell clones to be
followed in parallel. In these experiments, it has been
shown that clonal evolution follows neutral drift dynam-
ics in which a population of effectively equipotent Lgr5+
stem cells stochastically compete for crypt niche occupan-
cy [16–18]. Furthermore, Lgr5-GFP+ cells sorted by sin-
gle fluorescence-activated cell sorting (FACS) have the
capacity to initiate ex vivo organoid cultures (‘mini-guts’)
in 3D matrigel [19].

An alternative crypt stem cell has been postulated,
characterized by its ability to retain DNA labels and
occupying the +4 position as counted from the crypt base
[20]. More recent lineage tracing studies based on genes,
such as polycomb complex protein 1 oncogene (Bmi1),
mouse telomerase reverse transcriptase gene (mTert), leu-
cine rich repeat protein 1 gene (Lrig1), and Hop homeobox
(Hopx) [21–24] have implied that a quiescent cell popula-
tion located at the +4 position does indeed play a role in
intestinal homeostasis. However, whether these stem cell
pools represent distinct or overlapping populations, or how
they relate during homeostasis and regeneration, has been
the subject of intense debate.

Plasticity of intestinal stem cell populations

Several recent papers have addressed how alternative
stem cell pools or non-stem cells (identified by several
cellular markers; Figure 2B), might be mobilized after
perturbation of the crypt stem cell niche. Models employ-
ing irradiation and cytotoxic damage with drugs such as 5-
fluorouracil (5-FU) and doxorubicin, which induce apopto-
sis in proliferative cells, have demonstrated a rapid repair
102
and replenishment of crypt units, implying that plasticity
of rarely dividing or nonproliferative epithelial cells con-
tributes to the regenerative process [25].

Employing a diphtheria toxin receptor (DTR) knockin
genetic strategy to selectively delete Lgr5 expressing CBCs
in vivo (Box 1), it was noticed that loss of actively dividing
Lgr5-expressing CBC stem cells can be accommodated by
the small intestine. Combining the Lgr5-DTR model with a
Bmi1–CreERT2–RosaLacZ model, Bmi1-expressing cells
expanded upon the elimination of CBCs to compensate for
the loss of the actively cycling stem cell pool. However,
following clearance of diphtheria toxin (DT), Lgr5+ cells
rapidly reappear in vivo (as well as in mini-gut cultures
derived from Bmi1+ cells), suggesting that a non-Lgr5+
stem cell population can convert to actively cycling Lgr5+
stem cells [26]. A parallel experiment involving irradiation
of Lgr5–EGFP/Bmi1–CreERT2 models arrived at a simi-
lar conclusion. Here, Bmi1-expressing cells expanded upon
irradiation to replace the depleted Lgr5+ stem cells
[27]. Genetic lineage tracing using a Hopx–CreERT2/
RosaLacZ model (also marking +4 cells) provided further
support for the mobilization of a quiescent stem cell pool, in
the small intestine upon irradiation [22]. Re-evaluation of
the mRNA expression of the purported +4 quiescent stem
cell markers showed that they are rather broadly
expressed in the crypt including in the Lgr5+ CBCs
[28,29]. Moreover, cells located above Paneth cells at the
+4 position also express Lgr5 [30], indicating that lineage
tracing may have originated from double Lgr5/Hopx- or
Lgr5/Bmi1-expressing CBCs in these experiments. Indeed,
a recent study demonstrated the importance of Lgr5-
expressing progeny of CBCs in the Lgr5–DTR model dur-
ing regeneration after DT injection in combination with
radiation-induced damage [31]. Under this condition, de-
pletion of Lgr5+ stem cells impaired the regenerative
response, demonstrating that reserve stem cells such as
Bmi1+ cells and label retaining cells (LRCs) at the +4
position are unable to mediate efficient tissue repair fol-
lowing irradiation exceeding a critical threshold.

Dedifferentiation of committed progenitor cells in the

intestine

Within crypts, the Notch ligand Dll1 is expressed by secre-
tory cell progenitors at cell positions just above the stem
cell zone, which are immediate descendants of Lgr5+
cells [32,33]. Lineage tracing using a Dll1–GFP–IRES–
CreERT2 allele has shown that, during homeostasis, these
cells generate small, short lived clones that comprise goblet
cells, Paneth cells, tuft cells, and enteroendocrine cells.
Following ablation of stem cells by irradiation, however,
Dll1+ cells yield fully labeled crypt units including absorp-
tive cells, indicating that secretory progenitors can dedif-
ferentiate into stem cells in vivo [34]. This process might
occur when Dll1+ cells ‘fall back’ to replace the deleted
stem cells and re-establish contact with Paneth cells that
secrete instructive niche signals [35]. The notion that
contact with Paneth cells is essential for replacement of
lost stem cells is also supported by conditional deletion
of b-catenin mouse models. Here, replacement of lost
crypt cells was critically dependent on the presence of wild
type Paneth cells, while regeneration was significantly
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Figure 3. Dedifferentiation of epithelial cells during regeneration. (A) Basal stem cells generate differentiated Clara and secretory cells of the trachea during homeostasis.

Damage-induced loss of basal stem cells leads to dedifferentiation of Clara cells to repair the lung epithelium; (B) Differentiated proximal tubule epithelial cells of the kidney

become proliferative upon damage, generating new cells to repair the epithelium; (C) Troy+ differentiated chief cells populate the base of the stomach corpus epithelium.

Upon damage-induced loss of proliferative isthmus cells, Troy+ chief cells become proliferative and are able to replenish proliferative isthmus cells as well as parietal cells,

mucous cells, and neuroendocrine cells. Green color marks plastic cell populations and their offspring during regeneration. Proliferative cells are signified with blue nuclei;

differentiated cells have a red nucleus.
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compromised upon b-catenin deletion in all crypt cells
including Paneth cells [36].

A recent elegant study re-examined the identity and
function of LRCs during homeostasis and damage
responses, using an inducible histone 2B–yellow fluores-
cent protein (H2B–YFP) knockin mouse model [37]. Two
populations of cells retained the chromatin label: (i) as
expected, the long-lived Paneth cells (also corroborated in
another study [38]); and (ii) a more heterogeneous popula-
tion that is scattered in crypts and predominantly localizes
around the +3/+4 position. Intriguingly, a fraction of the
heterogeneous population was positive for Lgr5, Lrig1 and,
prominin-1 (CD133) whereas the bulk expressed Paneth
cell and enteroendocrine cell markers and might thus
constitute a secretory precursor cell. Strikingly, the ex-
pression levels of proposed +4 markers such as Bmi1,
mTert, Lrig1, and Hopx were similar in LRCs and CBC
stem cells. Notably, YFP–LRCs could form organoids in
vitro when stimulated by Wnt3a, implying that exposure to
niche signals can indeed revert them to multipotent stem
cells. To study the function of LRCs, an innovative lineage
tracing strategy was employed that relied on the cell
cycling status rather than on marker genes. This system
hinges on a split-Cre recombinase with one split-Cre moi-
ety expressed under the ubiquitous Rosa26 promoter, and
the second split-Cre moiety fused to H2B and expressed
under the control of a drug-inducible [cytochrome P450 1A
(Cyp1a)] promoter. Following H2B–Cre label incorporation
into the genome, administration of a dimerizing agent
allows temporal control of Cre activity. These experiments
have shown that LRCs do not contribute to the stem cell
pool during homeostasis. However, upon cytotoxic damage
with doxorubicin, LRCs are able to give rise to multipotent
stem cells supporting a role as reserve stem cells.
Another recent study using a newly generated Ki67-RFP
knockin allele has identified a quiescent Lgr5-low crypt
population as the early secretory precursors, corroborating
this data [39].

These recent studies reconcile the CBC stem cell model
and the +4 model [11,12,20,40]. Actively cycling Lgr5+
CBCs are responsible for the day-to-day generation of
new cell lineages. Among the CBC progeny are a subset
of Lgr5-low/Bmi1+ quiescent cells that are precursors of
Paneth and enteroendocrine cells, and are most likely
equivalent to the noncycling +4 cells that can replenish
the active stem cell pool upon damage-induced depletion
(Figure 3). In effect, a dedicated quiescent, noncommitted
stem cell pool in the intestine may not exist, as a com-
mitted progeny of Lgr5+ stem cells, including LRCs, can
be a source of new stem cells by displaying plasticity.
Since individual LRCs are relatively short-lived, they
should not be considered stem cells in a strict sense.
However, new LRCs are continually generated by the
cycling Lgr5+ stem cells. It has also been proposed else-
where [38] that a pool of LRCs is, therefore, always
available to be called into action as facultative reserve
stem cells upon tissue damage. Whether fully differenti-
ated intestinal cells such as enterocytes can revert to
stem cells, and under which situation this might occur,
will be worth investigating.

Epigenetic regulation of intestinal plasticity

Differentiation is generally associated with epigenetic
changes, such as DNA methylation and histone methyla-
tion and acetylation, that regulate access to regulatory
sequences for transcriptional activators and repressors
[41]. Do niche signals such as Wnt, therefore, play a role in
maintaining an epigenetic state that dictates ‘stemness’
and do epigenetic mechanisms play a role in dedifferen-
tiation? In the intestine the loss of histone deacetylase
enzymes (HDAC1/2) disrupts cell lineage commitment
[42]. A recent study on histone marks that permit
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chromatin accessibility surprisingly showed that many
intergenic regulatory regions were prominently marked,
with no significant differences, between intestinal stem
cells and their progeny committed to the secretory and
enterocyte lineages [43]. This implies that regulatory
regions in intestinal cells are continuously accessible to
lineage specifying transcription factor, upstream niche
factors, and other environmental factors to alter cell fate
via dedifferentiation, or perhaps, transdifferentiation.

DNA methylation is thought to be a relatively stable
silencing mark and methylation surrounding transcrip-
tion start sites (TSS) normally correlates with gene re-
pression [44]. Furthermore DNA methylation is generally
most dynamic at regulatory regions outside the TSS,
although the functional significance of these dynamics
is often unclear. A recent study showed that DNA meth-
ylation is static at TSS during small intestine stem cell
differentiation, and that the minimal changes observed
primarily occurred at enhancer elements [45]. In a paral-
lel study, conditional ablation of the maintenance DNA
methylating enzyme Dnmt1 led to crypt expansion, sug-
gesting that global DNA methylation is important for
differentiation, and low level DNA methylation changes
were identified at regulatory regions close to genes
important for stem cell maintenance and differentiation
[46]. Although the disparate conclusions could be a result
of difference in the analytical methods employed, these
methylation changes did not affect histone marks. Given
that Dnmt3b knockout (loss of de novo methylation) has
no effect in the intestine [47], it remains to be seen what
the functional importance is of these minimal local
changes during differentiation. Future studies are need-
ed to clarify what level of methylation change is biologi-
cally significant for lineage specification and whether
other epigenetic factors such as chromatin remodelers
play a role in intestinal plasticity.

Niche signals during intestinal regeneration

Niche-derived signaling cues that regulate intestinal
homeostasis have been well characterized (reviewed in
[48]). Slit2 has been shown to increase stem cell numbers
and augments the regenerative response upon damage in
an autocrine fashion [49]; however, little is known about
exogenous factors that control stem cells and mobilize non-
stem cell populations during regeneration. Perhaps best
understood is the Drosophila gut where multiple extrinsic
signals including nutritional, inflammatory, and physical
stress signals have been described to increase stem cell
turnover [50,51]. A role for diet in murine intestinal
stem cell regulation, mediated by the niche, has been
reported. Here, caloric restriction leads to inhibition of
the mammalian target of rapamycin complex 1 (mTORC1)
pathway, specifically in Paneth cells, inducing them to
release the paracrine factor ADP-ribose, which enhances
stem cell function. Furthermore, reduction in caloric in-
take improves the ex vivo organoid forming efficiency of
isolated crypts and in vivo survival and proliferation of
intestinal crypts after damage induced by ionizing irradi-
ation [52].

Inflammatory cytokines released upon epithelial barri-
er damage act as mitogens for the epithelium and directly
104
govern regenerative responses [53]. For example, secretion
of interleukin-22 (IL-22) is induced after damage and
controls intestinal repair via activation of signal transduc-
er and activator of transcription 3 (Stat3) signaling
[54]. While this pathway facilitates wound healing, its
deregulation can cause hyperproliferation and cancer
[55]. Not surprisingly, IL-22 signaling activity is tightly
controlled by constitutive production of neutralizing IL-22
binding protein (IL22-BP) by colonic dendritic cells
[56,57]. Investigating how signals facilitating plasticity
yield normal cells during regeneration or induce neoplastic
transformations of differentiated cells will be instrumental
for their therapeutic applications.

Stem cell organization and plasticity in other epithelial
organs
Depending on anatomical and physiological constraints,
other organs have adopted distinct strategies of self-re-
newal. In this section, we discuss emerging concepts from
recent literature that employ genetic lineage tracing in
mice to show how stem cell hierarchies and plasticity are
realized in other mammalian epithelial tissues during
homeostasis and regeneration.

Dedifferentiation of committed mature airway cells in

the lungs

Mammalian lungs are made up of two distinct domains: the
conducting airway tubes, consisting of trachea, bronchi,
and bronchioles, and the alveolar spaces where gaseous
exchange takes place. Each of these regions harbors unique
stem cell types and progenitor cells, which are thought to
give rise to the differentiated cells that maintain the
functional integrity of the lungs. In the adult mouse tra-
chea, a scattered population of epithelial basal stem cells
expressing keratin 5 (K5), keratin 14 (K14), and tumor
protein p63, is responsible for cellular turnover. Lineage-
tracing experiments of the basal cells using K5–CreERT2
or K14–CreERT2 strains has shown that these cells have
the potential to self-renew and generate two differentiated
cell types (Clara cells and ciliated cells) during post-natal
growth and after injury, placing the basal cells at the top of
the cellular hierarchy to generate and repair the tracheal
epithelium [58,59].

Recently, it has been demonstrated that differentiated,
secretory Clara cells in the trachea can revert into func-
tional stem cells in vivo upon ablation of basal stem cells
(Figure 3A). The authors concluded that the presence of
basal cells inhibits dedifferentiation of Clara cells during
homeostasis. Using an ex vivo co-culturing assay, they
could demonstrate that this inhibition is not dependent
on a secreted factor. Whether direct cell contact of Clara
cells to basal cells inhibits dedifferentiation, or whether
acquisition of contact to the underlying basement mem-
brane promotes their dedifferentiation,  remains to be
seen [60]. The propensity of committed cells to dediffer-
entiate was inversely correlated to their state of maturi-
ty. It will be interesting to ascertain whether this
plasticity of long-lived lung cells predisposes them to
mutational transformation and is involved in heteroge-
neity of lung tumor subtypes and their varied responses
to chemotherapy [60].
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Dedifferentiation of mature proximal tubule epithelial

cells in the kidney

In the adult mammalian kidney, the number of functional
nephron units is fixed and it is critical to repair the
damaged low turnover epithelium to preserve organ func-
tion. Label retaining studies [using 5-bromo-2-deoxyur-
idine (BrdU) incorporation] have suggested the existence
of slow cycling cells in the proximal tubule (PT) that may
harbor stem cell potential [61]. Regeneration of the PT
epithelium following ischemic reperfusion injury has
previously been suggested to involve dedifferentiation
and proliferation of all surviving epithelial cells based
upon expression of embryonic markers and DNA label
retention [62,63]. Recent lineage tracing experiments
have corroborated the involvement of dedifferentiated
epithelial cells in renal repair. In this study, the research-
ers used a mouse model where the CreERT2 cassette is
under the control of the SLC34a1 gene promoter, which
encodes a phosphate transporter that is only expressed in
fully differentiated PT epithelial cells [64]. The combina-
tion of injury with low dose tamoxifen induction to label
single differentiated cells showed that the number of
labeled cells increased post-ischemia, that they were
highly proliferative, and thus contributed to tube elonga-
tion (Figure 3B). Interestingly, in kidneys that had un-
dergone ‘saturation labeling’ with a high dose of
tamoxifen followed by injury, no dilution of the label
occurred post-ischemia, implying that no other progeni-
tor population is involved in proximal renal tube repair
[65]. It thus appears that dedifferentiation in the kidney
may be a quicker and more efficient route to regeneration
upon focal damage (such as ischemic reperfusion injury).
These results, however, do not exclude the possibility
that a distinct progenitor population may exist that is
sensitive to ischemic damage [65,66], or that regenera-
tion is by self-duplication of surviving differentiated cells
rather than dedifferentiation.  Identification of putative
markers and lineage tracing procedures in combination
with other injury models will be useful in clarifying these
issues. Of note, this mechanism is highly reminiscent of
that of the liver after hemi-hepatectomy where fully
differentiated hepatocytes rapidly enter the cell cycle
to rebuild the missing part of the liver [67,68].

Dedifferentiation of mature chief cells in the stomach

In the stomach, region-specific stem cell populations have
been identified. In the distal pyloric antrum (also known as
the pylorus), genetic lineage tracing using the Lgr5–
CreERT2 mice has shown that cells at the base of the
stomach glands give rise to all the differentiated lineages
[69]. Similar to the intestine, these pyloric Lgr5+ cells are
actively cycling, self-renewing every 3–4 days, are multi-
potent, have a Wnt target gene expression signature, and
can generate self-renewing gastric organoids in vitro. The
existence of rare progenitor cells, marked by a villin trans-
gene, can be found in the isthmus and base of stomach
glands, and under homeostatic conditions, appear quies-
cent. However, upon induction by inflammatory damage,
notably by interferon gamma, they become proliferative
and regenerate the entire gastric epithelium [70]. It is
currently unclear what the nature of these cells is, but
they may represent the stomach version of intestinal
LRCs. Independent genetic lineage tracing experiments
have also identified a Sox2-expressing stem cell population
composed of actively proliferating and quiescent subpopu-
lations, just above the base of the pylorus glands [71]. How-
ever, it is unclear how these are functionally related to
Lgr5+ pyloric stem cells.

In the corpus, Trefoil factor 2 protein gene TFF2+ cells
located in the proliferative isthmus region have been iden-
tified as multipotent progenitor cells using genetic lineage
tracing [72]. Using a Troy–GFP–IRES–CreERT2 model, a
fully differentiated cell population with stem cell potential
was recently identified [73]. Troy (also known as Tnfrsf19)
is a Wnt target gene that is also expressed in Lgr5+ stem
cells in the small intestine and colon [74]. In the corpus,
however, Troy is expressed by a subpopulation of chief cells
and parietal cells located at the gland base. During homeo-
stasis, Troy+ chief cells fulfill all requirements of differen-
tiated cells. Interestingly, upon removal of proliferative
isthmus cells induced by 5-FU treatment, Troy+ chief cells
re-enter the cell cycle to replenish the lost cells [73]
(Figure 3C). In support of their stem cell potential, single
isolated Troy+ chief cells can generate stomach organoids
ex vivo that contain mucous cells of the neck and pit.
Therefore, differentiated, quiescent Troy+ chief cells can
turn into stem cells to regenerate damaged gastric glands
of the corpus upon loss of the proliferative stem cell pool. It
appears that this plasticity of Troy+ chief cells may be
regulated by Wnt signaling, because these cells express
multiple Wnt target genes. However, the exact source of
Wnt ligands remains to be identified.

Transdifferentiation of mature hepatocytes in the liver

The liver is undeniably the doyen of regeneration, where
differentiated cells can function as facultative stem cells
after injury [75]. Although lineage tracing techniques
with putative marker genes have been employed to char-
acterize various progenitor populations during homeosta-
sis and regeneration, controversies still exist about the
specificity of the cell fate, and the existence and function-
al characterization of liver stem cells (reviewed elsewhere
[76,77]). A recent lineage tracing study using a hepato-
cyte specific adenovirus expressing a Cre transgenic
model crossed to a Rosa–YFP reporter line [68] confirmed
a previous study [78], showing that, upon toxin injuries
and bile duct ligation, mature hepatocytes transdiffer-
entiate into differentiated biliary epithelial cells
(Figure 4A), most likely through an atypical ductal cell
intermediate, under the influence of Notch signaling to
replenish lost cells. This process was thought to occur via
a stepwise cascade of induction of biliary markers and
morphological changes, although it is unclear if the hepa-
tocytes undergo proliferation [68]. A follow-up study
using the same adenovirus Cre/reporter model corrobo-
rated previous observations that, upon partial hepatecto-
my and toxin injuries, hepatocytes can also undergo
self-duplication to generate new hepatocytes [7]. Identifi-
cation of niches and markers that will allow lineage
tracing of stem cell activity during homeostasis will
be useful in clarifying cell lineage specification and
plasticity in the liver.
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Transdifferentiation of acinar cells in the pancreas

The pancreas epithelium has a low turnover and exerts
both exocrine and endocrine secretory functions. The exo-
crine glands consist of differentiated acinar and ductal
cells, whereas the endocrine function is mediated by dif-
ferentiated epithelial cells in the islets of Langerhans,
which consists of glucagon secreting alpha cells, insulin
secreting beta cells, somatostatin secreting delta cells, and
polypeptide producing (PP) cells. Lineage tracing of alpha
[79], beta [80], duct [81], and acinar cells [82] in the adult
pancreas suggests that these cells self-duplicate without
the need for a dedicated stem/progenitor cell population
during homeostasis. Although controversies still surround
the existence of pancreas stem cells and facultative pro-
genitors, in vivo lineage tracing experiments have shown
that transdifferentiation is utilized by the pancreas during
regeneration [83]. Due to lack of space, we only highlight
one recent in vivo study (read [4] for a detailed review).
Combining acinar cell specific lineage tracing with phar-
macological ablation of beta cells, it was shown that acinar
cells can transdifferentiate into beta cells, most likely
through a duct cell intermediate and regain of embryonic
multipotency [84] (Figure 4B). Although the fraction of
mature beta cells generated by this exocrine to endocrine
interconversion was small, it widens the therapeutic
options for de novo generation of beta cells in diseases
such as diabetes.

Transdifferentiation in the adrenal cortex

The adrenal cortex constitutes the outer layer of the cap-
sule-surrounded adrenal gland and physiologically
secretes steroid hormones. Anatomically, it is demarcated
into an outermost zona glomerulosa (zG) layer, a middle
zona fasciculate (zF), and an innermost reticularis
(Figure 4B). In rodents, a poorly understood X zone lies
between the reticularis and the medulla. The zG and zF
comprise differentiated epithelial cells secreting minera-
locorticoids (aldosterone) and glucocorticoids (such as cor-
ticosterone and cortisol), respectively. Progenitor cells
located in the capsule and subcapsular region, and expres-
sing Gli1 and Sonic Hedgehog (Shh), contribute to the
differentiated cell lineages in the zG and zF of the adrenal
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cortex [85], which has a slow turnover of approximately
12 weeks. Another population of progenitors in the X zone
has also been reported to be involved in generating differ-
entiated cells of the adrenal cortex [86].

Recently, lineage-tracing studies using a zG-specific
CreERT2 line have demonstrated that postnatal adreno-
cortical zonation involves direct lineage conversion of zG
cells into zF cells during homeostasis [87] (Figure 4C).
This transdifferentiation is also observed during adrenal
regeneration in older animals upon dexamethasone-in-
duced ablation of zF cells. However, in the absence of zG
cells, specification of zF cells was unperturbed implying
that the adrenal cortex is highly plastic, with a preferred
transdifferentiation mode of regeneration and alternate
modes to generate zF cells. It will be interesting to deter-
mine in the future if progenitors in the capsule or X zone, or
other differentiated progenitor cells in the cortex cell or
medulla, represent alternative sources for zF cells during
regeneration.

Concluding remarks
It is evident that multiple epithelial tissues in both fast-
renewing as well as slow-renewing organs employ commit-
ted cells as reserve stem cells upon damage. Although
there is much debate about the existence of distinct quies-
cent stem cells acting as reserve stems cells upon damage,
it appears they may not be needed in the epithelial tissues
discussed above, because differentiated cells can perform
that function. In fact, it may not be easy to distinguish
noncycling committed cells from genuine quiescent stem
cells, unless lineage tracing strategies can be designed. It
remains to be seen if the facultative employment of differ-
entiated cells as reserve stem cells during regeneration
represents a universal phenomenon in all epithelial tissues.
Tissue-specific regeneration strategies that focus on defin-
ing the right conditions to ‘awaken’ the plasticity potential of
differentiated cells (be it in vivo or in vitro) might be a
valuable alternative to stem cell-focused strategies.
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